

OCR Computer Science AS Level

1.2.3 Introduction to Programming
Intermediate Notes

www.pmt.education

Specification:

1.2.3 a)

● Procedural programming language techniques:
○ Program flow
○ Variables and constants
○ Procedures and functions
○ Arithmetic, Boolean and assignment operators
○ String handling
○ File handling

1.2.3 b)

● Assembly language
○ Following and writing simple LMC programs

www.pmt.education

Procedural programming language techniques

Procedural programming uses a sequence of instructions which are carried out in a
step-by-step manner.

Program Flow
Structured programming is a popular subsection of procedural programming in which the
program flow is given by three main programming structures:

- Sequence
Code is executed line-by-line, from top to bottom.

- Selection
A certain block of code is run if a specific condition is met , using IF, ELSE IF
and ELSE statements.

- Iteration
A block of code is executed a certain number of times or while a condition is
met. Iteration uses FOR, WHILE or REPEAT UNTIL loops.

Variables and Constants
Variables are named locations in memory where data is stored. The contents of this
location can be changed while the program is being executed.

Variables are assigned using the = sign , as shown below:

name = Ellen
sides = 3

The = used here is called an assignment operator.

Constants are also named locations in memory , but the value of a constant cannot be
edited by the program during execution . Constants are used for values that do not need to
be changed or to prevent a value from being accidentally changed. Constants are often
capitalised :

PI = 3.14159
VAT = 20

Procedures and Functions
Procedures and functions are both named blocks of code that perform a specific task.
While procedures do not have to return a value , functions must always return one, single
value.

www.pmt.education

The subroutine below is an example of a function as it always returns a value of either
True or False regardless of the input:

function isEven(number):
if number MOD 2 = 0:

return True
else:

return False
end function

Arithmetic, Boolean and assignment operators
Arithmetic operators are used to carry out mathematical functions within programs, such
as +, -. * and /. There are several addition symbols used to perform extra functions:

** is used for exponentiation which is when a number is raised to a power.
2**4 gives 16.

DIV or // calculates the whole number of times a number goes into another. This is
called integer division .
50 DIV 7 gives 7.

MOD or % is used to find the remainder when a number is divided by another.
50 MOD 7 gives 1.

Relational operators are used to make comparisons between two values and produce a
result of either True or False. These include >, <, =, >= and <=.

One additional operator is the ‘not equal to’ operator which is often used as part of
conditional statements, as shown below:

if result != keyword:
Print ‘not found’

== is used to check whether a value is identical to another.

These can be combined with Boolean operators to check
whether multiple conditions are met within a single
statement. Boolean operators include AND, OR and NOT.

The code below shows a conditional statement formed of
Boolean operators:

www.pmt.education

if num2>num1 AND num2 MOD 2!=0:

return True;

String handling
There are various operations that can be performed on
strings and that you need to be aware of.

To get the length of a string:
stringname.length

text=”physics and maths tutor”
text.length will produce 23.

To get a substring (a section within a string):
stringname.subString(startingPosition, numberOfCharacters)

text=”physics and maths tutor”
print(text.substring(2,4) will produce ‘ysic’.

File handling
In addition to manipulating strings, you need to be able to use pseudocode to handle files.

To open a file to read:

myFile = openRead(“filename.txt”)

To read a line from a file:

fileContent = myFile.readLine()

To close a file:

myFile.close()

To open a file to write:

myFile = openWrite(“nameoffile.txt”)

To write a line to a file:

myFile.writeLine(“Physics and Maths Tutor”)

The end of the file is given by:

endOfFile()

www.pmt.education

Assembly Language

Assembly language is a low level language that is the next level up from machine code .

Assembly language uses mnemonics , which makes it easier to use than direct machine
code. Each mnemonic is an abbreviation for a machine code instruction and is
represented by a numeric code. However, the commands that assembly language uses
are processor-specific.

Each line in assembly language is equivalent to one line of machine code.
Below is a list of the mnemonics you need to be aware of and be able to use:

Mnemonic Instruction Function

ADD Add Add the value at the given memory address to the
value in the Accumulator

SUB Subtract Subtract the value at the given memory address
from the value in the Accumulator

STA Store Store the value in the Accumulator at the given
memory address

LDA Load Load the value at the given memory address into the
Accumulator

INP Input Allows the user to input a value which will be held in
the Accumulator

OUT Output Prints the value currently held in the Accumulator

HLT Halt Stops the program at that line, preventing the rest of
the code from executing.

DAT Data Creates a flag with a label at which data is stored.

BRZ Branch if zero Branches to a given address if the value in the
Accumulator is zero. This is a conditional branch.

BRP Branch if positive Branches to a given address if the value in the
Accumulator is positive. This is a conditional branch.

BRA Branch always Branches to a given address no matter the value in
the Accumulator. This is an unconditional branch.

www.pmt.education

Below is an example of an LMC program which returns the remainder, called the modulus,
when num1 is divided by num2:

INP
STA num1
INP
STA num2
LDA num1

 positive STA num1 // branches to the ‘positive’ flag,
SUB num2 subtracting num2 while the result
BRP positive of num1 minus num2 is positive
LDA num1
OUT
HLT

 num1 DAT
 num2 DAT

www.pmt.education

